NMR INVESTIGATION OF ALKALOIDS.

TV. ¹³C NMR SPECTRA AND STRUCTURES OF NORFLUOROCURARINE, AKUAMMICINE, VINCANIDINE, AND VINERVININE

On the basis of the results of a comparative analysis of the $13C$ NMR spectra of α -methyleneindoline alkaloids with the akuammicine nucleus, an assignment has been made of the carbon signals, and the structures of vincanidine and vinervinine with the substituents OH and OCH₃ at C_{12} of the aromatic nucleus established previously with the aid of PMR have been confirmed unambiguously.

The structures of α -methyleneindole alkaloids with the akuammicine nucleus - vincanidine, vincanicine, vinervine, and vinervinine $-$ were previously [2] established on the basis of an analysis of their PMR spectra. It appeared of interest to study the structures of these alkaloids with the aid of ''C NMR spectroscopy, since the ''C chemical shifts (CSs) of the carbons of an aromatic ring change in accordance with the positions of the substituents. The literature contains practically no information on the 13 C NMR spectra of alkaloids of the akuammine nucleus (III), with the exception of the 13 C CSs of the C₉, C₁₀, C_{11} , and C_{12} aromatic carbon atoms of (III) itself and of the alkaloids alstovine [3], with a reduced $C_{19}-C_{20}$ bond, and 16-isoretuline [4], which is a dihydroindole derivative.

We give the results of a study of the 13 C NMR spectra of norfluorocurarine (vincanine) (I), vincanidine (II), akuammacine (III), and vinervinine (IV).

 $I \ R = R = H$, norfluorocurarine (vincanine)

- π $R = 0$ H, $R = H$, vincanidine
- $m R = H$, $R_1 = OCH_3$, akuammicine
- IV $R = R_t = OGH_3$, vinervinine

The spectral characteristics are given in Table 1 and in Fig. I. The assignment of the $13C$ signals of compounds (I-IV) was based on an experiment with the complete decoupling of C-H interactions and by a comparison of the $13C$ CSs of (I-IV) with literature reports of the ¹³C NMR spectra of alkaloids containing an α -methyleneindole nucleus [5, 6], and also with the $13C$ NMR spectra of model compounds - o-methoxyphenol [7] and o-anisidine taking into account the α , β , and γ contributions of the OH and OCH₃ groups to the CSs of the aromatic carbon atoms. In the spectra of the α -methyleneindoline alkaloids (I)-(IV) in the 109-188 ppm region the signals clearly appear of $13C$ sp² carbons: C_2 , C_8 , C_{13} , and C_{20} as singlets, and C_9 , C_{10} , C_{11} , C_{12} (in (I) and (III) and C_{19} as doublets in the offresonance spectrum, the $H-C=0$ signal of the aldehyde carbon in (I) and (II) naturally appearing in the form of a doublet and the $C=0$ signal of the ester group in (III) and (IV)

Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR, Tashkent. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 210-212, March-April, 1983. Original article submitted April 13, 1982.

*The assignment of the C₂ and C₁₇ signals in (III) and (IV) is ambiguous.

in the form of a singlet. The CSs of the carbon atom of the aldehyde groups of norfluorocurarine (I) and of vincanidine (II) are close to the CS of the C=0 group of acrolein $[2]$. As was to be expected, the signal of the C_{12} aromatic carbon atom, bearing a OH group in (II) and a OCH₃ group in (IV) has a singlet nature in the off-resonance spectrum. The values of the CSs of the ¹³C sp² carbons C₉, C₁₀, C₁₁, and C₁₂ of akuammicine (III) coincide to within an accuracy of 0.2 ppm with the literature figures [3], and the CSs of the C_2 and C₁₆ carbon atoms of (III) and of vinervinine (IV) are close to those of tabersonine and of vincadifformine [5]. At the same time, in the $13C$ NMR spectra the signals of the C₁₉ and C₂₀ carbon atoms of the ethylidene double bond are shifted downfield by 2-3 ppm as compared with the same signals of the dihydroindole alkaloids of the type of ajmaline with C_2 -aH $[1, 9].$

In the 62.7-12.7 ppm region of the spectra of the alkaloids studied, the signals of ${\tt sp}^3$ carbon atoms appear in numbers and multiplicities corresponding accurately to structures $(1)-(IV)$ (Table 1). A comparison of the CSs of the quaternary C_7 carbon atom of alkaloids of the ajmaline type [1, 9] and of alkaloids of the oxindole series [10] with those of compounds $(I-IV)$ showed their closeness. The assignment of the signals of the C_6 , C_{14} , and C_{21} carbon atoms in (I-IV) was made on the basis of a comparison with such alkaloids of the vincadifformine [5] and ajmaline $[1, 9]$ series. The CSs of the C₆ carbon atoms in alkaloid (I-IV) and those of the vincadifformine series practically coincide. The CSs of the C_{14} and C_{21} carbon atoms of the alkaloids $(I-IV)$ and those of the ajmaline type $[1, 9]$ are also close.

The carbon atoms of the methyl groups of $Ar-OCH₃$, $COOCH₃$, and $C=C-H₃$ differ sharply, and their CSs correspond to the standard values [11].

In a determination of the positions of the OH and OCH₃ substituents in the aromatic ring of vincanidine (II) and in that of vinervine (IV), the most characteristic criterion is the fact that these substituents, being electron donors, lead to a substantial screening of the carbon atoms located in the ortho and para positions to them. An analysis of literature information on the ¹³C NMR spectra of model hydroxy- and methoxy-substituted phenols [7], oanisidine, the a-methyleneindoline alkaloid alstovine [3], and those given in Table 1 shows that the OH and OCH₃ substituents in the aromatic ring make the following contributions (increments) to the ¹³C CSs of the neighboring carbon atoms: $\alpha = +34 \pm 15$ ppm, ortho = $-15 + 2.5$ ppm; para = -7 + 1 ppm; meta = +2 + 0.5 ppm, and we have observed that the magnitudes of these contributions depend on the degree of substitution of the carbon atoms. Since the C_{12} carbon atom in indoline and α -methyleneindoline alkaloids is the most highly screened through the donor influence of the N_{a} atom its signal is observed in a weak field relative

to the other carbon atoms of the aromatic ring (see Table 1). In the 13 C NMR spectrum of (I) and (III), the differences in the CSs of the C_{11} and C_{12} carbon atoms amount to 17.4 and 18.3 ppm, respectively (see Table 1). Taking into account the α and β contributions of the OH substituent in (II) and the OCH₃ substituent in (IV) to the CSs of the carbon atoms to which they are attached and of the ortho carbon atom of the aromatic ring permits the position of the OH group in vincanidine and the OCH₃ group in vinervine to be determined unambiguously as C_{12} . These characteristics of the ¹³C NMR spectra agree completely with the analogous conclusions drawn previously on the structures of the alkaloids vincanidine, vincanicine, vinervine, and vinervinine drawn previously on the basis of an analysis of the PMR spectra.

EXPERIMENTAL

The 1^{3} C NMR spectra of the alkaloids (I-IV) were obtained on Varian CFT-20 and XL-100-15 and Bruker WM-250 spectrometers in CDCl₃, 0 - TMS (δ _{TMS} = δ _{CDCl₃ + 76.91 ppm) and in Py-d₅,} 0 – TMS, in the pulsed regime with subsequent Fourier transformation under the conditions of complete and incomplete off-resonance decoupling of C-H interactions.

SUMMARY

On the basis of the results of a comparative study of the 13 C NMR spectra of α -methyleneindoline alkaloids with the akuammicine nucleus, an assignment of the signals of the carbon atoms has been made and the structures of vincanidine and vinervinine established previously by analysis of PMR spectra have been unambiguously confirmed.

LITERATURE CITED

- i. M. R. Yagudaev, Khim. Prir. Soedin., 731 (1982).
- 2. M. R. Yagudaev, V. M. Malikov, and S. Yu. Yunusov, Khim. Prir. Soedin., 260 (1974).
- 3. S. Mamatas-Kalamaras, T. Sevenet, C. Thal, and P. Potier, Phytochemistry, 14, 1637 (1975).
- 4. E. Wenkert, H. T. A. Cheung, H. E. Gottlieb, M. C. Koch, A. Raboron, and M. M. Plat, J. Org. Chem., 43, 1099 (1978).
- 5. E. Wenkert, D. W. Cochran, E. W. Hagaman, F. M. Schell, N. Neuss, A. S. Katner, P. Potier, C. Kan, M. Plat, M. Koch, H. Mehri,J. Poisson, N. Kunesch, and Y. Rolland, J. Am. Chem. Soc., 95, 4990 (1973).
- 6. Y. Rolland, N. Kunesch, J. Poisson, E. W. Hagaman, F. M. Schell, and E. Wenkert, J. Org. Chem., 41, 3270 (1976).
- 7. W. B. Smith and T. W. Proulx, Org. Magn. Reson,, 28, 205 (1976).
- 8. D. H. Marr and J. B. Stothers, Can. J. Chem., 43, 596 (1965).
- 9. A. Chatterjee, M. Chakrabarty, K. Ghosh, E. W. Hagaman, and E. Wenkert, Tetrahedron Lett., 3879 (1978).
- i0. M. R. Yagudaev and S. Yu. Yunusov, Khim. Prir. Soedin., 227 (1980).
- 11. E. Breitmayer and W. Voelter, ¹³C NMR Spectroscopy, Verlag Chemie, Weinheim (1974).